Description Logic (DL) Sensing Δ 8th of September 2014 Ω 11:37 AM

ΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞ
yourDragonXi~ Korea
yourDragonXi~ The United Kingdom
yourDragonXi~ KRDB Research Center for Knowledge and Data, Italy
yourDragonXi~ Department of Computer and Systems Sciences, Rhome
yourDragonXi~ Technische Universität Dresden
yourDragonXi~ Oxford University Computing Laboratory
yourDragonXi~ yourDragonXi~ Reasoners
yourDragonXi~ SPASS by Max Planc Institut Informatik
yourDragonXi~ Max Planc Institut Informatik
yourDragonXi~ Department of Computer Science, University of Manchester
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ

ξ
ξ
ξ
«Software Sensing
Θ

Θ
ΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞ
































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~ Korea

»Korea



select: ~[Σ] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~ The United Kingdom

»The 22nd International Workshop on Description Logics (DL2009)



select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~ KRDB Research Center for Knowledge and Data, Italy

»KRDB Research Center for Knowledge and Data, Italy



select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~ Department of Computer and Systems Sciences, Rhome

»Department of Computer and Systems Sciences, Rhome



select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~ Technische Universität Dresden

»Technische Universität Dresden



select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~ Oxford University Computing Laboratory

»Professor Ian Horrocks

»Oxford University Computing Laboratory, Boris Motik
ξ interested in developing algorithms and techniques necessary for realizing advanced applications in the Semantic Web
ξ research has so far been focused around the Semantic Web ontology language OWL
ξ an ontology language with firm theoretical roots in the description logic (DL) family of knowledge representation formalisms
ξ in PhD developed algorithms for reasoning in OWL by reusing database technologies and implemented these techniques in the KAON2 reasoner
ξ the German company ontoprise GmbH is currently using KAON2 in a commercial setting

ξ recently been working on a new reasoner HermiT
ξ this reasoner is based on a novel reasoning algorithm based on hypertableau,
ξ which allows HermiT to process several ontologies that have traditionally been quite "hard"

»HemiT
ξ HermiT is a theorem prover for description logics (DLs) -- a family of knowledge representation formalisms with many uses.
ξ DLs have attracted considerable attention recently since provide a logical underpinning for the Ontology Web Language (OWL)
ξ For more information about description logics, please refer to The Description Logic Handbook.
ξ The reasoner currently fully handles the DL SHIQ and support for SHOIQ is on its way.
ξ The main supported inference is the computation of the subsumption hierarchy.
ξ More precisely, for classes C and D, HermiT can determine whether C is subsumed by D -- that is, whether KB |= C ? D.
ξ HermiT can also compute the partial order of classes occurring in an ontology.

ξ HermiT also supports description graphs -- a novel extension to DLs and OWL.
ξ For more information about description graphs,
ξ please refer to the technical report Structured Objects in OWL: Representation and Reasoning.
ξ For instructions on how to use description graphs with HermiT and other related information, please refer to this page.

ξ HermiT implements a novel hypertableau reasoning algorithm.
ξ The main aspect of this algorithm is that it is much less nondeterministic than the existing tableau algorithms.
ξ We thus hope to obtain a truly scalable DL reasoning system suitable for application in the Semantic Web.
ξ A description of the reasoning technique for the DL SHIQ has been published at CADE 2007
ξ in a paper called Optimized Reasoning in Description Logics using Hypertableaux.

Downloading and Compiling HermiT
ξ HermiT has been written in Java 1.6. Please download the current version of Java SDK from Sun's Web site.
ξ Hermit uses KAON2 as the API for loading and managing ontologies.
ξ You will need to download the current version of KAON2 from its web site and put kaon2.jar into your classpath.
ξ Please note that KAON2 is distributed under a different license agreement; please refer to KAON2's Web site for more information.
ξ The downloaded archive contains HermiT.jar, which is a precompiled version of HermiT, and
ξ HermiT.src.jar, which contains HermiT's sources.
ξ The main class for the HermiT is org.semanticweb.HermiT.



select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~



select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~ Reasoners

»Reasoners



select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~ SPASS by Max Planc Institut Informatik

»SPASS by Max Planc Institut Informatik



select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~ Max Planc Institut Informatik

»Max Planc Institut Informatik



select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~ Department of Computer Science, University of Manchester

»Logics and Ontologies by Department of Computer Science, University of Manchester

What is an Ontology
ξ a formal conceptualisation of the world
ξ specifes a set of constraints, which declare what should necessarily hold in any possible world
ξ any possible world should conform to the constraints expressed by the ontology
ξ given an ontology, a legal world description is a possible world satisfying the constraints

Ontology languages
ξ usually introduces concepts (aka classes, entities),
ξ properties of concepts (aka slots, attributes, roles),
ξ relationships between concepts (aka associations), and additional constraints
ξ languages may be simple (e.g., having only concepts),
ξ frame-based (having only concepts and properties), or logic-based (e.g. Ontolingua and DAML+OIL)
ξ are typically expressed by means of diagrams
ξ the Entity-Relationship conceptual data model and UML Class Diagrams can be considered as ontology languages

Meaning of basic constructs
ξ An entity/class is a set of instances;
ξ an association (n-ary relationship) is a set of pairs (n-tuples) of instances;
ξ an attribute is a set of pairs of an instance and a domain element

»Dl and Databases

»Description Logics and Logics



select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Small & Smart Inc reserves rights to change this document without any notice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~