Michigan Car Sensing Δ 21th of April 2017 Ω 10:09 AM

ΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞ
yourDragonXi~ Mcity
yourDragonXi~ University of Michigan
yourDragonXi~ GM
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ
yourDragonXi~ sense for Ξ

ξ
ξ
ξ
«Car Sensing of U.S.
Θ

Θ
ΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞΞ
































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~ Mcity

Mcity – a 32-acre, real-world driving environment based at the University of Michigan

The connected car is snow joke (excuse the pun),
yet if the future of transport is autonomous vehicles,
then they had better be able to cope with extreme driving conditions such as snow blizzards.

Being based in the northern state of Michigan, the Ford Motor Company knows a thing or two about snow.

Ford’s autonomous research vehicle,
which is based on a Ford Fusion Hybrid,
has been out and about in blizzard conditions and lived to tell the tale.
The company says it is the first car manufacturer to publicly demonstrate autonomous vehicle operation in the snow.

The company's winter weather road testing takes place in Michigan,
including at Mcity – a 32-acre, real-world driving environment based at the University of Michigan.
Ford’s testing on this full-scale simulated urban campus
is aimed at supporting the company’s aim to learn about and advance the emerging field of autonomous driving.

At the heart of Ford's approach is LiDAR
– a surveying technique that uses lasers to measure distances.
Ford uses LiDAR to create high-resolution 3D maps of roads and the surrounding areas,
which are created when conditions are clear.

It uses four LiDAR scanners that generate 2.8 million laser points per second,
creating a map that serves as a baseline for identifying the car’s position
when driving in autonomous mode.

So when the weather turns bad, and the road and verges are covered in snow,
the autonomous car can use the LiDAR sensors to scan the environment in real time to locate itself within the pre-mapped area.

It’s not just the roads and verges that are scanned and stored though,
the process also collects and analyses a diverse set of data about the road and surrounding landmarks
– such as signs, buildings, trees and other features.

One car collects up to 600GB of LiDAR data per hour.
In addition, Ford says its LiDAR sensors are sensitive enough to detect falling snowflakes or raindrops,
returning the false impression that there’s an object in the way.

The next step was to work with researchers at the University of Michigan
to create algorithms to let the car know that these readings are not of physical objects,
such as people or other vehicles, and instruct the car to drive through them.
The LiDAR is also sensitive enough to accurately place the vehicle within a 3D scanned map to within a centimetre,
rather than the several metres associated with GPS.

In addition to LiDAR sensors,
Ford uses cameras and radar to monitor the environment around the vehicle,
with the data generated from all of those sensors combined in a process it calls sensor fusion.
This process means that one inactive sensor – perhaps caused by ice or dirt build-up on a sensor lens –
does not necessarily prevent autonomous driving.
Ford is currently working on self-cleaning and defogging measures to improve reliability.

The need for 5G
To truly achieve autonomous driving there needs to be real-time communication with
other vehicles, places, people and databases.
This requires high reliability and extremely low latency (as low as 1ms), and
will only come from 5G networks supported by mobile edge computing.
It also needs the close cooperation between the telecoms industry and
the automotive industry (which has never happened before), and
that cooperation needs to start right now, during the initial discussion of system requirements that will lead to the new 5G standards.

mobile expected to move away from being a standalone industry into becoming a crucial service layer in multiple different industries.




select: ~[Σ] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~ University of Michigan

»umich.edu



select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~ GM

»GM
ξ »Cadillac

LIDAR mapping strategy by Cadillac
Cadillac didn’t deploy a fleet of camera-mounted vehicles
to record footage of the nation’s highways, like Google does for Street View.
Nor did it rely on “fleet learning” like Tesla,
in which many vehicles operating on the same software work together to build a more detailed map.

Instead, Cadillac used vehicles equipped with high-powered LIDAR sensors
to build a highly detailed map of the US highway system.

Cadillac went out and mapped 160,000 miles of interstate highways
Barry Walkup is chief engineer of Cadillac’s Super Cruise
mapped them within five centimeters of accuracy
claimed to be the first use of a LIDAR map

The car can see farther than the sensors on the car with the map
With lidar map, able to see about 2,500 meters ahead
a sharp curve we be anticipated to decelerate the car in order to maintain a g-level to take the curve

The new technology to be rolled out in Cadillac’s flagship CT6 sedan.
Car buyers can expect to shell out $2,500 for the standalone option on luxury (sticker price: $66,290) and platinum models ($85,290).
Also on luxury models, Super Cruise requires buyers to purchase the $3,100 driver assist package.

The inclusion of the LIDAR maps is what Cadillac thinks will set Super Cruise apart from its competitors.

Tesla recommends its drivers only use the semi-autonomous Autopilot system while driving on the highways,
but technically the electric car company can’t do anything to enforce that.

Cadillac has more control over how its customers use Super Cruise because of the mapping data.
Super Cruise is restricted to only “divided, limited-access highways
— highways with defined ‘on-’ and ‘off-ramps’
no cities
no residential communities

Cadillac knows where the car is because of the LIDAR map and the other data in the car
Therefore Cadillac has the ability to geofence it

But a map is only as useful as the road itself.
With construction and lane closures occurring randomly,
it could be a problem if Cadillac’s LIDAR maps tell a different story
than the conditions on the road ahead.

Cadillac’s mapmakers are constantly checking the US Department of Transportation databases and
deploying trucks to re-map road construction areas.
And over-the-air updates are provided on an annual basis.

Cadillac wanted to restrict its hands-free driving feature to the highway because,it was a lot easier.
No intersections, no pedestrians, no bicyclists, just long stretches of open (or congested) highway.

While companies like Waymo (née Google) and Uber have self-driving cars deployed in dense, urban areas, and
are working toward developing Level 5, fully autonomous cars
that don’t require any human intervention, Super Cruise is just a Level 2 system.

Which means that drivers still need to keep their eyes on the road and
stay engaged with the operation of the vehicle.
They may be able to take their hands off the steering wheel and feet off the pedal,
but if they turn their eyes away for more than 30 seconds,
the car will know thanks to an infrared camera attached to the top of the steering column.

Eyes closed?
The car will know and start a sequence of alerts to get the driver’s focus back on the road.
It can even see through UV-blocking sunglasses.

camera isn’t recording or storing any data
Cadillac isn’t interested in spying, just making sure you’re watching the road.

Cadillac tested a variety of alerts,
like heads-up displays on the windshield and lights on the instrument cluster,
before settling on something it calls the “light bar,”
a strip of LED lights embedded in the top of the CT6’s steering wheel.
The light bar will start flashing red if the driver is caught not paying attention.
It’s similar to what racing cars do
It’s information to the driver immediately
It’s right in your face



select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω] ~[Δ]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
yourDragonXi ~





select: ~[Σ] ~[Ω]!































































~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Small & Smart Inc reserves rights to change this document without any notice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~